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Abstract. An approximate analytical method that can be used for E 0 E and other similar 
Jahn-Teller systems is discussed. It is applicable at all energies and all coupling strengths, 
and gives quite a good account of the energy levels and other properties of the eigenstates 
over the whole range of these parameters. 

1. Introduction 

In spite of all the work that has been done on the theory of the E 0 E Jahn-Teller system 
since 1958 when Longuet-Higgins et a1 published the energy levels obtained by 
numerical methods, there is still no good analytical solution that can be applied over the 
whole range of coupling strengths and energies. One might ask why we want such a 
solution when the simple process of diagonalising a tri-diagonal matrix on a computer 
will give all the energies and eigenvectors, and hence all the physical properties that we 
need to know. The answer lies partly in the physicist’s feeling that an analytical solution 
provides more physical insight than a numerical one, but mainly in the fact that an 
analytical solution is easier to refine by perturbation methods. The simple E 0 E 

system, an electronic doublet coupled linearly to an E-type pair of phonon modes, is too 
simplified to be applied to most physical systems in three important respects. First, even 
for a genuinely isolated complex a small amount of anharmonicity or of quadratic 
coupling can drastically alter the properties of the ground state and the other low-lying 
energy levels; secondly, in a real solid, even if there is only one electronic doublet to be 
considered there will be many different phonon frequencies; and thirdly, in considering 
the cooperative Jahn-Teller effect we may have to allow for the interactions between 
many ions with E-type doublet ground states. Any one of these complications, if 
approached by numerical methods that are extensions of the calculation of Longuet- 
Higgins et al (1958), generate computational problems which can either only be solved 
by very sophisticated methods, or are too big to be solved at all. Thus we need to be able 
to ap,ply approximate methods to these problems, and to apply such methods we really 
need some kind of analytical solution to the basic E 0 E problem. 

The foregoing paragraph explains why it is worth continuing to expend effort on 
finding approximate analytic solutions to the E O E  and other more complicated 
dynamic Jahn-Teller problems, and we shall next explain what is new and improved 
about the solution to be discussed in this paper. Until now analytic solutions have 
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k ( j  + ;)1’2 j + $ k 
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k j + 4  k ( j + 
k (  j + q)1’2 j + k J? 

- . . .  - 

always been based on approximations valid only at certain energies and coupling 
strengths. There are good solutions for states whose energy is large or small compared 
with the Jahn-Teller energy, but what has been lacking is any solution that can be used, 
however badly, at all coupling strengths and energies. The solution proposed here does 
just that; it can be used for eigenstates of any energy and for any coupling strength. As 
will be shown, it gives the general energy level structure correctly, and in such a way that 
every energy level can be followed continuously from zero to infinite coupling strength. 
The energies are correct at strong and weak coupling, and the discrepancies in the 
difficult zone of intermediate coupling strength are quite small. 

The theory discussed here has already been presented briefly (Barentzen 1979), and 
in this paper we set it out in greater detail, together with evidence on its agreement (or 
disagreement) with exact numerical solutions. We also show explicitly how it can be 
applied to the other Jahn-Teller systems that are mathematically similar to E 0 E .  

2. The approximate Hamiltonian 
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j .  We hope to show that the result is a set of solutions that contains broadly all the 
characteristics of the exact solutions (which themselves can only be obtained numeric- 
ally) over the complete range of coupling strengths and energies. 

To make the procedure clear.we start by numbering the basis states of the matrix 
(2.1), and for this we use n and let n = 0 ,1 ,2  . . . . Then the matrix elements are given by 

( n  1 XJT/n) = j + i + n 

(nlXjTln+1)= k ( j + i n  fi)1/2 ( n  even) (2.3) 

= k ( i n  +$)l / ’  ( n  odd). 

We are then going to compare this Hamiltonian with that given in equation (2.2) where 
the states are labelled by N = 0, 1, 2 . . . : 

(N/ae,lN) = N + 4 
(NlXolN+ 1)= k ( ; N + ; y 2  (2.4) 

and the choice of comparisons can be made explicit by putting 

j + n = N + a  (2.5) 

where a must be an integer if j is an integer or half-integral if j is half-integral. In this 
work we take a = j throughout, whereas Judd takes a value of a that is independent of j ,  
and he chose cy = 0 in his analysis of rS 0 r2. We see from (2.5) that taking a = j makes 
the states n = 0 and N = 0 coincide, but a different choice of a requires an adjustment in 
the choice of basis states. With cy < j ,  N = 0 corresponds to a negative value of n, so 
before using the transformation some extra basis states must be added at the low-energy 
end of the matrix (2.1). As (2.3) gives a zero off-diagonal matrix element at n = -1, 
these extra states are uncoupled, and should not affect the final exact solution except by 
appearing as extra roots. With a > j the matrix (2.1) is simply truncated at the 
low-energy end. We shall keep ct in the calculations for a little longer in order to 
compare the results of the different approaches. 

We now find the difference between X o  and XJT from the explicit form of the matrix 
elements given in (2.3) and (2.4): 

(Nl%J,-%!?olN)=j+n-N=a 

( N I x J T - ~ ~ ~ N + ~ ) = ~ - ” ~ ~ [ ( N + ~  + I + ~ ) ~ ’ ~ - ( N + I ) ~ ’ ~ I  ( n  even) (2.6) 
( N ~ X j ~ - ~ ~ ~ N + 1 ) = 2 - ” ’ k [ ( N + ~  +1 -j)l’’-(N+l)l”] ( n  odd). 

These off-diagonal elements are now taken just to first order in a i j  to give a correction 
term 

( N \ x , ~ -  X ~ ~ N  + 1) = = i k ( 2 ~ + 2 ) - ’ / ~ [ a  +j(-1)”+*-’] (2.7) 

and this in turn is used to define a new perturbation by its matrix elements 

(N(VIN+1)=$k(2N+2)-1 /2[a  +j(-l)”*-’] 

(NI VIN)  = cy. 

We then replace XjT by Xo+ V and treat this new Hamiltonian as the problem to be 
solved. The energy levels and eigenstates of Xo can be found exactly, as they are just 
those of a displaced harmonic oscillator; the energies are 

E,=-’ 2k + n + $  n = 0 , 1 , 2  . . .  (2.9.) 
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and the associated eigenstates are those of a harmonic oscillator centred ab x = -k 
instead of at x = 0. We are now able to treat V as a perturbation in the eigenstates of 
3Yo; we take it to first order only, and this is the approximation that will be used 
throughout the rest of this paper. It should be noticed that approximating (2.6) by (2.7) 
does not give the correct result for n = -1, so the extra basis states that are included for 
cy < j are involved in this approximation. 

3. The energy levels 

The energy to first order in V can be found by finding the expectation value of V in the 
eigenstates of Xo.  Our result can be put in the form 

E,,(a, j ,  k)  = - $ k 2 + n  +5+cyf , , (k2 )+( - l )a+ i ig , (k2 )  (3.1) 

where 
,, (L 7 . P  7.k 1 f,,(k2) = exp (--4k2) 1 - 

p = o  p !  

and 
n (k2)p n-1 ( - 1 ) P  (k2)”-P 

f , , ( k 2 ) + g , ( k 2 ) = e x p ( - k 2 ) (  p = ~  -+ p !  
p = ~  1 -- p + l  ( n - p - l ) !  L:-’ (k ’)) . 

(3.2) 

(3.3) 

Here the L,”-l(k2) are associated Laguerre polynomials in their standard form (see 
Abramovitz and Stegun 1970). The calculation of fn(k2)+gn(k2)  was given in the 
original report of this work (Barentzen 1979) and the separate calculation of f n ( k 2 )  is 
given in appendix 1 to this paper. The functionf,,(k2) is a rounded step function; it starts 
at f , , ( O )  = 1 and continues with very little change of value to the neighbourhood of 
k 2  = 2n where it decreases from nearly one to nearly zero, then it tends to zero as k 
tends to infinity. The functionfn(k2) + gn(k2) is oscillatory, as can be seen by considering 
its derivative (see appendix 1): 

d 
dY 
- (f,,(y)+g,,(y)) = -(-I)” e-’L;(2y). (3.4) 

The Laguerre polynomial L:(2k2) has n zeros, which lie between k2  = 0 and k2  = 1.4n;  
thus the functionfn(k2)+gn(k2) has n turning points between k 2  = 0 and k 2  = 2n where 
the step occurs, and it can also be seen that it tends to 1 at k 2  = 0 and zero as k 2  tends to 
infinity. It is hard to make any more progress analytically, but a little computer plotting 
shows that the effect of adding g, to f,, is to add small amplitude oscillations to the 
plateau section off,,, but not to alter the general step-function shape. 

As remarked earlier, our choice is to take cy = j ,  and in figures 1 and 2 we compare 
plots of the energy levels for E 0 E produced by putting cy = j in (3.1) with correct plots 
produced by numerical diagonalisation of the matrices. It can be seen that we have good 
agreement over a wide range of parameters. Every energy level can be followed 
continuously through from small to large k, and the step from the regime in which 

E,, = -$k2 + n + $+ j (3.5) 
to that in which 

(3.6) 
1 2  E , ,z -zk  + a + $  
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Figure 1. Exact and approximate energy levels for i = 4 ( m  = 0). The broken curves show 
the results of the approximate calculation, the full curves the exact (numerical) solutions. 

is correctly carried by the step in f n ( k 2 ) ,  and occurs in the correct region of the k 2  axis. 
The oscillations about the energy (3.5) are provided by the oscillations in g,(k2); they 
have the correct amplitude and occur in the correct numbers, but those for the largest k2  
tend to spill out towards too high a value of k2. However, these discrepancies are small 
compared with the overall agreement between the approximate and correct energies, 
which is certainly better than for any other approximate treatment we are aware of. 

At this point we should come back to Judd's treatment of the problem. His method 
is applied to rs 0 ~ 2 ,  which has integral j ,  and he takes a = 0. The result of this choice is 
to cure one deficiency in our treatment at the expense of introducing another. His 
analysis was aimed at accounting for the nodes in the graphs of energy against k 2 .  These 
nodes are clearly visible in figure 2 ,  where in the oscillatory part of the spectrum the 
curves for different values of j all cross the base-line given by (3.5) at the same point. It 
is clear from equation (3.1) that this will happen if a = 0, because all the oscillations are 
carried in the function g,(k2), and all the curves that coincide at k = 0 have the same 
oscillatory function. With our choice of a, CY = j ,  curves starting from the same point at 
k = 0 have different oscillatory functions, and consequently the nodal behaviour is lost. 
However, putting a = 0 introduces a serious discrepancy in the overall energy level 
structure, as the continuity between the energy levels at small and high k is lost. These 
energy curves must come down by a step of the right size;fn(k2) is the only step function 
available in this treatment, and putting a = j is consequently the only way of getting the 
step size right. We would emphasise that our aim is different from Judd's in the paper 
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2 3 L 5  0 1  
k 2  

Figure 2. ( a )  Correct energy levels for j = i, $, 3, ( m  = 0, 1 , 2 ) .  The broken curves show the 
energy levels of the appropriate displaced harmonic oscillator. ( b )  As for ( a ) ,  but now the 
energy levels are calculated using our approximation. 

quoted; he was specifically looking for the energy nodes, and he took his perturbation to 
several orders higher in j ,  while we are trying to see how far we can get with a variety of 
properties taking the perturbation to first order in j only. 

4. Properties of the eigenstates 

4.1. The H a m  factors 

It is well known that a set of approximate eigenstates may not be as good as the 
associated approximate eigenvalues, and we test our eigenstates in two ways. The first 
is by a calculation of the Ham factors, or reduced matrix elements which were 
introduced by Ham (1968). The Ham factor, called p ,  has been calculated for the n = 0 
state, and this calculation has already been reported by Barentzen (1979). The result is 

p = e-kz+ j e-k’(Ei(k2) +E1(k2))  -2 j  e-2k2(Ei(2k2)-ln(2k2)- C) (4.1) 

where Ei(z) and E l ( z )  are exponential integrals and C is Euler’s constant. The 
agreement between this p and the computed value is shown in figure 3. The asymptotic 
form for large k is 

p = j ( y + - +  1 3 21 +o(-$)), 
2k 2k6 16k8 (4.2) 
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Figure 3. Exact and approxima!- values of the Ham factor p for the ground state. The 
broken line shows our approximation, the full curve the exact value. 

which agrees with the form calculated by O’Brien and Pooler (1979) up to terms linear 
in i. 

4.2. The absorption intensities 

Ever since the E 0 E problem was worked through by Longuet-Higgins et a1 (1958), the 
calculation of the double-peaked absorption spectrum has formed part of any work on 
the system. What is calculated is the overlap between the original uncoupled zero- 
phonon state and each of the new eigenstates, and then this overlap is squared so as to 
give a theoretical zero-temperature absorption intensity. This is a particularly testing 
calculation for our approximation, as the two peaks come on either side of the energies 
given by n = ;k2 ,  and it can be seen from the figures that this is just the region where our 
approximate energies are least good. This may be partly understood by taking a closer 
look at the coupled differential equations which can be used to represent these systems 
(see, e.g., Longuet-Higgins et a1 1958). The potential energy contains an effective 
centrifugal term which goes like j 2 / r 2 ,  which becomes important near r = 0, and as it is 
exactly that region near r = 0 which dominates the eigenstates in the energy region 
around n = 4k2 we would expect our omission of all the j 2  terms to be at its most serious 
here. 

Our calculated absorption spectra take on very complicated forms that we have not 
succeeded in simplifying, and we give the details of the calculation in appendix 2. The 
results are shown in figure 4. Considering the nature of the approximation, they are 
surprisingly good, but comparison with the results of Longuet-Higgins et a1 (1958) 
shows that at strong coupling we are getting the relative intensities of the two peaks 
wrong; they should be of more nearly equal size. 

5. Conclusion 

The method of solution presented here gives a good account of the energy levels of an 
E 0 E system over the whole range of energies and coupling strengths. The properties 
of the eigenstates that we have calculated have come out quite well, even where, as for 
the absorption intensities, they belong to the difficult intermediate region. 
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id I 
2 

iE-E',i ) / h w  

Figure 4. Exact and approximate intensities for four different coupling strengths: ( a )  
k 2  = 5 ;  ( b )  k 2  = 10; (c) k 2  = 15; ( d )  k 2  = 20. The full curves are from exact (numerical) 
solutions, the broken lines from our approximation. The broken lines are offset from the 
full ones for ease of reading. 
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Appendix 1. The calculation of f . (k2)  

The quantity cyf,,(k2) is the expectation value of V,, part of the perturbation V, in the 
nth eigenstate of Xo,  the Hamiltonian of a displaced harmonic oscillator. To find it we 
start by expanding the eigenstates of X o  in terms of the eigenstates of an undisplaced 
harmonic oscillator 

In) = c I"%) (A.1) 
N 

where (N ln )  is a standard overlap integral depending on k. Now V, is that part of V 
which contains cy as a factor, and we have from equations (2.6) and (2.8) that 

(all other matrix elements being zero) so that 

1 
f f l  ( k 2 )  = - ( n  1 V, In) = 1 (Nln)(N + 1 In) k (2N + 2)-'12 + 1. (A.4) 

cy N 

The overlap integrals are given compactly by the generating function 
2P+4 1/2 

exp[ -$k2+k( t - s )+2s t ]=C ( p l q ) s p r 4 ( - )  p ! q !  
P34 

(A.5) 

and picking out the coefficient of t" from this gives 

(2s + k)"(2"n!)-1/2 exp(-$k2- ks) = ( p l n ) s p  ($) (A.@ 
P 

If we square both sides of this equation, multiply by U "  and sum over n, we get 
1 I2  

e x p [ ~ k 2 ( u - 1 ) + k ( s + ~ ) ( u - l l ) + 2 u ~ ~ ] = ~  ( p l n ) ( j l n ) s p U i u " ( ~ )  . 
Pi" 

(A.7) 

To pick out the terms on both sides in which j = p + 1 we have to expand some of the 
exponentials on the left-hand side, and get 

k2m+1(u - 1 ) 2 m c ' ( ~ ~ ) m ~  
exp[ik2(u - 111 C exp(2 usu ) 

m=O m ! ( m  + l)! 
2 112 

= N, n (N jn ) (N+ lln)(su)NUu"; (=) . (A.8) 

Next, to get this equation into the right form, we can put 2su = t, U = $k e-' and integrate 
both sides with respect to t from 0 to CO. Since 

and 

(assuming \ U /  < 1) (A.lO) 
1 - exp[(u - l ) t ]  dt  = 

(1 - 
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a little manipulation gives 

(A. 11) 
1 
- exp[3k2(u - l)] = 1 unfn(k2), 
1 - U  n 

whence expanding this generating function gives fn(k2) as quoted in equation (3.2). 
A similar procedure takes us from the equation 

g,(k2) =C ( - l ) N ( N l n ) ( N +  l ln)k(2N+2)-”2 (A. 12) 
N 

to the generating function 
1 1 ungn(k2)=-{exp[k2(u -l)/(u+1)]-exp[$k2(u-1)]} (A.13) 

n 1 - U  

and hence to 
1 U - 1  1 U (f, (k’) + g, (k2)) = - exp( k2  -) . 

n 1 - U  u + l  
(A.14) 

This generating function does not produce a simple form for f, (k2) + g n ( k 2 ) ,  but it can 
be shown to correspond to equation (3.3).  However, differentiating it with respect to k2  
gives the result 

(A. 15) 

and this generating function is a standard one for Laguerre polynomials (Abramovitz 
and Stegun 1970, equation (22.9)), from which we find 

(A.16) 
d 
- ( f n ( y )  +gn (y ) )  = -(-I)” e-’~L’’(2y). 
dY 

Appendix 2. Calculation of absorption intensities 

The optical absorption intensities for A-, E transitions are related to the squares of the 
coefficients a:; which occur in the expansion of the Jahn-Teller eigenfunctions in terms 
of the eigenfunctions of the two-dimensional isotropic oscillator (Longuet-Higgins et a1 
1958). These coefficients were derived in the previous account of this theory (Barentzen 
1979). There i t  was shown that up to and including terms linear in j 

(A.17) 

Here and in the following formulae the prime on the summation sign indicates that the 
term r = n  has to be omitted. (Nlr) is the harmonic oscillator overlap defined in 
appendix 1. 

For the particular case of a dipole-allowed transition from the vibrationless elec- 
tronic A state ( p  = 0) to the nth Jahn-Teller level, associated with the electronic E state, 
the intensity is proportional to 

F,(x) = Iah’,/”I2 (A. 18) 
1 2  where x = Tk . 
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There are two kinds of matrix elements occurring in (A.17). The first one, the 

(oln)  = ( x ” / n  exp(-$x). (A.19) 

The second one, V,, = (rl Vln) ,  is much more complicated; after a lengthy but straight- 
forward calculation one obtains for r > n 

overlap (Oin), is easily found and is 

(A.20) 

where L y ( z )  denotes an associated Laguerre polynomial. The analogous expression 
for r < n is obtained from (A.20) by interchanging r and n. After inserting equations 
(A.19) and (A.20) into (A.18) the resulting expression for F,(x) contains some infinite 
sums. These sums can be reduced to expressions containing only finite sums combined 
with higher transcendental functions. We now simply list the relevant infinite sums and 
the resulting reduced expressions, whose validity can be checked by comparing the 
coefficients of equal powers of x on either side of the following equaiions 

Xf l  ff -- 
r = ~ r ! ( n  - r )  n !  

r=on-rp=o f f -  ~ ’ = e 2 ~ ( ~ 1 ( 2 x ) + I n ~ x + C -  p !  

f-- 1 n-1 - (-1y (2x)r-p L;-p(2x) 

Yn (X 1 _ - -  X r  

1 “ 1  
r = ~  -)- r p = ~  op p!  Yp(2x) 

c 
r = n + l  r ! ( n  - r )  p = o  ( p +  1) ( n  - p  - I ) !  

wfl-q (2x 1 

Wfl(X) f (2xY/q! 
- ( - X I n  -- 

n !  q = o  

(-2x)” 
n !  p = o  

wfl - q ( 2  x ) -- 

x n  n-l(-2x)Pf’ Lp+l 
+ n l L 0 p ! ( n - p )  n-p-l(2X)Wp(X). 

In equations (A.21) 

( A . 2 1 ~ )  

(A.21b) 

( A . 2 1 ~ )  

(A.2 1 d )  

(A.22) 
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and 
m 1  

q = l  q = l 4  

m 

~ , ( z ) = ~ ~ ( z ) - l n ( z ) - C - e ~  2 (q- l ) !z- '+ 1 - .  (A.23) 

In the above equations EI(z) and E i ( z )  denote exponential integrals (Abramovitz and 
Stegun 1970) and C is Euler's constant. With the help of equations (A.21) F,,(x) takes 
on the form 

n-1 X r  r - 1  ( -1 )P  (2x)"-P 
+ X -  - 1 - L;-p(2x) r = o n - r p = o p + l  ( r - p - l ) !  

(A.24) 

Equation (A.24) can be further simplified with the help of the following identities (again 
the validity of the subsequent expressions can be verified by comparing the coefficients 
of equal powers of x on either side of the equations): 

n-1 1 (2X)k n-1 l r  
= -  1 __ i --+2" 1 - 1 (-2)-"L;-'(4x) 

r = ~ n - r k = ~  k !  ,=o n - r p = ~  

(A.25b) 
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( A . 2 5 ~ )  

q - 1  
c 

p = ~  p ! ( n  - p )  
n-1 x r  ( - 1 y  ( 2 X y  

(-*)-" - 'f' - L 7 ( 2 X )  
r = l  n - r P = o  p + 1 ( r  - p  - l)! 

n ( - 4 ~ ) - ~ " - ~  n - k  
p = o  ( 2 x ) P $ o ( k ) ~ ~ 1  ( r ( r  - 1 ) ! ( 2 ~ ) - ~  

n-1  ( - x ) r  r 

= n !(2x)-"  
~ 1 ( -2 ) 'LLP(4x )  

r = O  r ! ( n  - r )  p = ~  

(2x)P p - l  (-2)-r + n ! ( 2 x ) - "  f 7 L;-'(4x). ( A . 2 5 d )  __ 

The final result for Fn(x) is obtained by inserting equations ( A . 2 5 )  into (A .24 ) .  This 
yields 

i e - x  ~ + ( E 1 ( 2 x )  +In 2x + C )  F,, (x ) = e-' - - 

P = ~  p .  r = o  n - r  

X r  n-1 n X n  

n !  r = o  r ! ( n  - r )  n !  

( A . 2 6 )  X n  + t  ~ ~ ( x )  -7 n .   xi) . 
In ( A . 2 6 )  

n - I  x r  5' ( - l ) k  ( 2 x ) n - k  L ; - k ( 2 x )  z k - 0  k + 1 ( r  - k - l ) !  
n - l  (2x) '  r - l  (-2)-k (2x)' 

( - 2 ) - k L L - k ( 4 ~ ) -  r = l  1 r .  k = o  n - k  L ;; ( 4 x  ) - -I--- 
r = ~  r ! ( n  - r )  k = O  

n-1  1 r - 1  ( - 1 ) k  (2x)r-k 
- x n  ___ c-- L p (2x  ) ( A . 2 7 ~ )  

r = ~  r ! ( n  - r )  k = O  k + 1 ( n  - k - l)! 

(2x) '  n - r  ( - 2 ~ ) ~  
N n ( x ) =  I Y r ( 2 x ) + ( - l ) "  f ( ) f ( ) 7 y k ( 2 x )  

r = ~  r .  r = l  r - 1  k = r  k - r  

n ( - 4 ~ ) ~  
+(El)" (2x)-' f ( ) ___ y k  (2x1 

r = O  k z r  k ( k - r ) !  
n-1  (-2x)r+1 c L r- 1 (2x  ) Yr ( x  1. ( A . 2 7 b )  
r = o  r ! ( n  - r )  

Equations (A .27 )  have been used for a numerical computation of the intensity 
distribution; the results are depicted in figure 4 .  As a special case we obtain from 
equations ( A . 2 7 )  the intensities of the zero phonon lines ( n  = 0) as 

~ ~ ( x ) = e - ~ + ~ e ~ ~ ( ~ ~ ( 2 x ) + 1 n 2 x + ~ ) - ~ - - ~ ~ ( ~ , ( 2 ~ ) - 1 n 2 x  -c). ( A . 2 8 )  

References 

Abramovitz M and Stegun I A 1970 Handbook of Mathematical Funcrions (New York: Dover) 
Barentzen H 1979 Solid St. Commun. 32 1285-8 



124 H Barentzen, G Olbrich and M C M  O’Brien 

Ham F S 1968 Phys. Ret.. 166 307-21 
Judd R R 1977 J. Chem. Phys. 67 1174-9 
Longuet-Higgins H C, Opik U, Pryce M H L and Sack R A 1958 Proc. R. Soc. A 244 1-16 
O’Brien M C M and Pooler D R 1979 J. Phys. C: Solid Sr. Phys. 12 311-20 
Pooler D R and O’Brien M C M 1977 J. Phys. C: Solid Sr. Phys. 10 3769-91 
Thorson Wand  Moffit W 1968 Phys. Rev. 168 362-9 


